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Abstract—Greybox fuzzing has been the most scalable and
practical approach to software testing. Most greybox fuzzing tools
are coverage guided as code coverage is strongly correlated with
bug coverage. However, since most covered codes may not contain
bugs, blindly extending code coverage is less efficient, especially
for corner cases. Unlike coverage-based fuzzers who extend the
code coverage in an undirected manner, a directed fuzzer spends
most of its time budget on reaching specific target locations (e.g.,
the bug-prone zone) without wasting resources stressing unrelated
parts. Thus, directed greybox fuzzing is particularly suitable for
scenarios such as patch testing, bug reproduction, and special
bug hunting. In this paper, we conduct the first in-depth study
of directed greybox fuzzing. We investigate 28 state-of-the-art
fuzzers (82% are published after 2019) closely related to DGF,
which have various directed types and optimization techniques.
Based on the feature of DGF, we extract 15 metrics to conduct
a thorough assessment of the collected tools and systemize the
knowledge of this field. Finally, we summarize the challenges and
provide perspectives of this field, aiming to facilitate and boost
future research on this topic.

I. Introduction

To date, the most scalable and practical approach to software

testing has been greybox fuzzing, which draws much attention

in recent years [1–4]. Compared to blackbox fuzzing and

whitebox fuzzing, greybox fuzzing is efficient and effective.

Based on the feedback information from the execution, grey-

box fuzzers use an evolutionary algorithm to generate new

input and explore the paths. Greybox fuzzing is widely used

to testing application software, libraries [5], as well as kernel

code [6–8], and has been applied in practice to varieties of

targets, including protocols [9, 10], smart contracts [11, 12],

and multi-threaded programs [13–15].

Most greybox fuzzing tools are coverage guided, which aim

to cover as many program paths as possible within a limited

time budget. This is because, intuitionally, code coverage

is strongly correlated with bug coverage, and fuzzers with

higher code coverage can find more bugs. However, it is not

appropriate to treat all codes of the program as equal because

most covered codes may not contain bugs. For example,

according to Shin et al. [16], only 3% of the source code

files in Mozilla Firefox have vulnerabilities. Thus, testing

software by blindly extending code coverage is less efficient,

especially for corner cases. Since achieving full code coverage

is difficult in practice, researchers have been trying to target

the vulnerable parts in the code to improve efficiency and save

the resources. Thus, directed fuzzing is proposed.

Unlike coverage-based fuzzers who are blindly extending

the path coverage, a directed fuzzer spends most of its time

budget on reaching specific target locations (e.g., the bug-

prone zone) without wasting resources stressing unrelated

parts. Thus, directed greybox fuzzing is particularly suitable

for scenarios such as patch testing, bug reproduction, and

integration with other tools. Traditionally, directed fuzzers are

based on symbolic execution [17–20], which uses program

analysis and constraint solving to generate inputs that exercise

different program paths. Such directed fuzzers cast the reacha-

bility problem as iterative constraint satisfaction problem [21].

However, since directed symbolic execution relies on heavy-

weight program analysis and constraint solving, it suffers from

scalability and compatibility limitations.

In 2017, Böhme et al. introduced the concept of Directed

Greybox Fuzzing (DGF) [21]. By specifying a set of tar-

get sites in the program under test (PUT) and leveraging

lightweight compile-time instrumentation of the PUT, a di-

rected greybox fuzzer calculates the distance between the seed

and the target to assist seed selection. By giving more mutation

chances to the seeds that are closer to the target, it can

steer the greybox fuzzing to reach the target locations. DGF

casts reachability as an optimization problem to minimize the

distance of the generated seeds to the targets [21]. Compared

with directed symbolic execution, DGF has much better scal-

ability and improves the efficiency by several magnitudes. For

example, Böhme et al. can reproduce Heartbleed within 20

minutes while the directed symbolic execution tool KATCH

[20] needs more than 24 hours [21]. For now, DGF has evolved

beyond the primary pattern that depends on manually labeled

target sites and distance-based metrics to prioritize the seeds. A

great number of variations have been realized to boost software

testing under different scenarios, such as fuzzers directed by

target sequence [22–24], by semantic information [25, 26], by

parser [27], by typestate [28], by sanitizer checks [29, 30],

by memory usage [31], and by vulnerable probability [32].

Complex deep behavioral testing scenes, such as use-after-

free bugs [22, 28], memory consumption bugs [31], memory

violation bugs [33], algorithmic complexity vulnerabilities [5],

input validation bugs in robotic vehicles [34], and deep stateful

bugs [35].

In this paper, we focus on the up to date research progress

on DGF and conduct the first in-depth study of it. We

systemize the knowledge of DGF by surveying the state-of-
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the-art directed greybox (hybrid) fuzzers and conducting a

comprehensive analysis based on their assessment. In sum-

mary, we make the following contributions.

- We investigate 28 state-of-the-art fuzzers (82% are pub-

lished after 2019) closely related to DGF, which have

various directed types and optimization techniques. We

extract 15 metrics based on the features of DGF to

conduct a thorough assessment of the collected tools and

systemize the knowledge of this field.

- Base on the assessment of the known works, we summa-

rize six challenges to the research of DGF, including bi-

nary code support, automatic target identification, differ-

entiated weight metric, global optimum deviation, missing

indirect calls, and exploration-exploitation coordination.

We disclose the deep reasons behind these challenges and

propose possible solutions to address them.

- We give perspectives on future directions, aiming to

facilitate and boost research of this field.

The rest of the paper is organized as follows: Section 2

reviews the background knowledge of coverage-guided grey-

box fuzzing and directed greybox fuzzing. Section 3 evaluates

the collected state-of-the-art directed greybox fuzzers based on

the extracted metrics and systemizes the optimization details

of each work for the critical techniques in DGF. Section 4

summarizes the challenges of this field based on the current

research progress. Section 5 discusses future perspectives and

followed by conclusions.

II. Background

This section provides the background knowledge on CGF

and DGF. We use AFL and AFLGo to illstrate the principle,

respectively. Then we compare DGF with CGF to show the

difference. Finally, we summarize the application scenarios of

DGF.

A. Terminology

To avoid the confusion on the presentation of different

literature, we unify the terminology in fuzzing.

- Fuzzing. In this paper, fuzzing refers to traditional black-

box fuzzing and greybox fuzzing. We exclude whitebox

fuzzing as it depends on constraint solving of symbolic

execution to generate inputs, which is quite different from

evolutionary fuzzers based on mutation.

- Testcase. A testcase is an input to the PUT, which is

generated by randomly mutating a seed.

- Seed. A seed is a testcase that is favored (trigger a new

path or close to the target) and retained for the mutation

to generate new testcases in the next fuzzing iteration.

- Seed prioritization. Seed prioritization means to evaluate

and sort the seeds according to its performance. Priori-

tized seeds would be given more fuzzing chances.

- Power schedule Power schedule means to determine the

number of fuzzing tests to be applied on a seed (i.e.,

energy).

- Fuzzing cycle All seeds in the seed queue have been

fuzzed at least once.

B. Coverage-guide Greybox Fuzzing

Coverage-guide greybox fuzzing is the most prevalent

fuzzing scheme that aims to maximize the code coverage to

find hidden bugs. AFL (American fuzzy lop) [36] is the state-

of-the-art coverage-based greybox fuzzer, and many state-

of-the-art greybox fuzzers [1, 2, 4, 37] are built on top of

it. Here we use AFL as a representative to illustrate the

principle of CGF. AFL uses lightweight instrumentation to

capture basic block transitions and gain coverage information

during runtime. Then it selects a seed from the seed queue and

mutates the seed to generate testcases. If a testcase exercises a

new path, it is added to the queue as a new seed. AFL favors

seeds that triggered new paths and give them preference over

the non-favored ones. Compared to other instrumented fuzzers,

AFL has a modest performance overhead.

Edge coverage. AFL obtains the execution trace and calcu-

lates the edge coverage by instrumenting the PUT at compile

time. It inserts random numbers for each branch jump at

compile-time and collects these inserted numbers from the

register at run-time to identify the basic block transition.

Edge coverage is more delicate and sensitive than basic block

coverage as it takes into account the transition between basic

blocks. It is also more scalable than path coverage as it avoids

path explosion.

Seed prioritization. AFL leverages the edge-coverage in-

formation to select seeds. It maintains a seed queue and fuzzes

the seed within it one by one. It labels some seeds as “favored”

when they execute fast and are small in size. AFL uses a

bitmap with edges as keys and top-rate seeds as values to

maintain the best performance seeds for each edge. It selects

favored seeds from the top_rated queue, and gives these

seeds preference over the non-favored ones by giving the

favored one more fuzzing chances [38].

Mutation strategies. AFL has two categories of muta-

tion strategies: deterministic strategies and non-deterministic

strategies. The deterministic strategies are applied first, which

leverage mutators based on bit-flip, arithmetic, token, dictio-

nary, and interest values to sequentially mutate the seeds with

different granularity. After doing deterministic strategies, AFL

introduces non-deterministic strategies, including the havoc

stage and splice stage. In the havoc stage, AFL mutates the

seed by randomly choosing a sequence of mutation operators

from the deterministic strategies and apply them to random

locations in the seed file. As a result, the generated testcase is

significantly different from the original seed. Then, AFL uses

the splice strategy to randomly choose another seed from the

seed queue and recombine it with the current seed to generate

a new seed. Then, the havoc strategies are re-implemented to

the new seed.

Power schedule. In the deterministic stage, mutation strate-

gies are involved sequentially, but in the non-deterministic

stage, AFL can assign energy to the seed to decide the fuzzing

chances of each seed. The energy is assigned according

to the performance score of each seed, which is based on

coverage (prioritize inputs that cover more paths), execution



Algorithm 1: Directed Greybox Fuzzing.

Input: i − Initial input
Input: Target − A set of target locations
Output: BugInput − A set of buggy input
01 BugInput ← ∅

02 S eedQueue ← i
03 while true do
04 s← select(S eedQueue)
05 s′ ← mutation(s)
06 trace← execution(s′)
07 if f ind new path(trace) then
08 S eedQueue← S eedQueue + s′

09 if trigger crash(trace) then
10 BugInput← BugInput + s′

11 distance ← evaluate seed(trace, T argets)
12 S eedQueue ← sort insert(S eedQueue, s′, distance)
13 end

time (prioritize inputs that execute faster), and discovery time

(prioritize inputs discovered later) [39] Particularly, if the test

case exercises a new path, AFL will double the assigned

energy.

C. Directed Greybox Fuzzing

In 2017, Böhme et al. introduced the concept of Di-

rected Greybox Fuzzing (DGF) and implemented a tool called

AFLGo [21] based on the modern greybox fuzzing framework.

Unlike blindly increasing the path coverage in coverage-based

greybox fuzzing, DGF aims to reach a set of pre-identified

locations in the code (potentially the buggy parts) and spends

most of its time budget on reaching target locations without

wasting resources stressing unrelated parts.

Here we use AFLGo as the representative to illustrate

how DGF works. AFLGo follows the general principles and

architecture as coverage-guided fuzzing. During the compile-

time, in addition to instrument to obtain the execution path and

path coverage information, AFLGo also calculate the distances

between the input and the pre-defined targets. The distance is

calculated based on the average of basic blocks on the input

seed’s execution trace weight to the target basic blocks, where

the weight is determined by the number of edges in the call

graph and control-flow graphs of the program. Then, at run-

time, AFLGo prioritize seeds based on distance instead of new

path coverage and give preference to seeds closer to the targets

at basic block level distance. Böhme et al. view the greybox

fuzzing process as a Markov chain that can be efficiently

navigated using a “power schedule”. They leverage a simulated

annealing strategy to gradually assign more energy to a seed

that is closer to the targets than to a seed that is further away.

They cast reachability as an optimization problem to minimize

the distance of the generated seeds to the targets [1].

The exploration-exploitation problem. For DGF, the

whole fuzzing process is divided as the exploration phase and

the exploitation phase [21]. The exploration phase is designed

to uncover as many paths as possible. Like many coverage-

guided fuzzers, DGF in this phase favors the seeds that trigger

new paths and prioritizes them. This is because new paths

increase the potential to lead to the targets. It is particularly

necessary when the initial seeds are quite far from the targets.

Then, based on the known paths, the exploitation phase is

invoked to drive the engine to the target code areas. In this

phase, Böhme et al. prioritize seeds that are closer to the

targets and assign more energy to them. The intuition is that

if the path that the current seed executes is closer to any of

the expected paths that can reach the target, more mutations

on that seed should be more likely to generate expected seeds

that fulfill the target. The exploration-exploitation tradeoff lies

in how to coordinates these two phases. Böhme et al use a

fixed splitting of the exploration and exploitation phases. For

example, for 24-hour testing, AFLGo uses 20 hours for the

exploration and then 4 hours for the exploitation.

D. Difference between CGF and DGF

(1) Seed prioritization. A major difference between CGF

and DGF lies in the seed prioritization. Since CGF aims to

maximize the path coverage, CGF gives preference to seeds

that trigger new paths. Differently, DGF aims to reach specific

locations in the code. Thus, it prioritizes seeds that are “closer”

to the targets. The evaluation metrics of the seeds varies a lot,

including distance, coverage, path, and probability.

(2) Target involvement. CGF expands code coverage in an

undirected manner, which wastes testing resources on code

regions do not contain bugs. While for DGF, a set of targets

are marked in advance, manually or automatically, to guide

the fuzzing process and save the power. The target selection

can affect the performance of DGF. For example, selecting

critical sites, such as memory allocation function malloc() or

string manipulation function strcpy(), as targets are more likely

to trigger memory corruption bugs. Besides, we can leverage

the relationship among targets to accelerate detecting complex

behavioral bugs, such as use-after-free [22, 28]. Thus, the

involvement of targets gives more chance to optimize DGF

by applying customized techniques that are specific to DGF.

(3) Exploration-exploitation. Researchers [38, 40] model

the greybox fuzzing process as a “multi-armed bandit prob-

lem” where the seeds are considered as arms of a multi-

armed bandit. For coverage-based greybox fuzzing, the whole

process is essentially a tradeoff of the exploration-exploitation

problem, where exploration stands for trying as many seeds

as possible while exploitation means mutating a certain seed

as much as possible. For DGF, the exploration-exploitation

problem lies in coordinating the exploration phase and the

exploitation phase. In the exploration phase, DGF try to

discover as many seeds as possible and learn information from

them to increase the potential to reach the targets. At the same

time, the exploitation phase gives more chances of mutation

to seeds that are more likely to generate inputs to reach the

target.

E. Application of DGF

DGF is a promising direction as it is especially suitable

and effective for specific testing scenarios. We summarize the

following common practical application of DGF.

- Patch testing. DGF can be used to test whether a patch

is complete and compatible. A patch is incomplete when



a bug can be triggered by multiple inputs [41], for

example, CVE-2017-15939 is caused by an incomplete

fix for CVE-2017-15023 [42]. Meanwhile, a patch can

introduce new bugs [43]. For example, CVE-2016-5728

is introduced by a careless code update. Thus, directed

fuzzing towards problematic changes or patches has a

higher chance of exposing bugs.

- Bug reproduction. DGF is useful when reproducing a

known bug without the buggy input. For example, due to

concerns such as privacy, some applications (e.g., video

player) are not allowed to send the input file. With DGF,

the in-house development team can use DGF to reproduce

the crash with the method calls in stack-trace and some

environmental parameters [21]. DGF is also helpful when

generating Proof-of-Concept (PoC) inputs of disclosed

vulnerabilities given bug report information [25, 44]. In

fact, DGF is in demand because 45.1% of the usual bug

reports cannot be reproduced due to missing information

and users privacy violations [45].

- Knowledge boost. DGF can boost program testing by

integrating the knowledge from a human analyst or aux-

iliary techniques. Human-in-the loop is commonly used

in software testing, which can help to identify the critical

syscalls or security-sensitive program sites (e.g., memory

allocation function malloc(), string manipulation func-

tion strcpy()) based on the previous experience to guide

fuzzing to error-prone parts [35]. Auxiliary techniques,

such as symbolic execution [44] and tait analysis [46]

can be leveraged to overcome roadblocks in the testing.

Preliminary results from static analysis [12] and machine

learning based detection approach [32] can be used as the

potential vulnerable targets for DGF.

- Energy saving. Another interesting application of DGF is

when the testing resource is limited, for example, fuzzing

the IoT devices. Under this circumstance, to save the

time and computational resources spent on non-buggy like

code regions, identifying critical code areas to guide the

testing is more efficient than testing the whole program

in an undirected manner.

- Special bug hunting. Finally, DGF can be applied to

hunting special bugs based on customized indicators. For

example, finding uncontrolled memory consumption bugs

under the guidance of memory usage [31], find use-

after-free bugs under the guidance of typestate violation

[28]. With DGF, the efficiency of discovering behavioral

complex bugs can be greatly improved.

III. Assessment of the-state-of-the-artWorks

During the last three years, DGF has drawn the atten-

tion of the whole field, and many followups appear. In

this section, we collect and investigate 28 fuzzing works

relevant to DGF. To reflect the state-of-the-art research, we

choose to include works from top-level conferences on security

and software engineering. Alphabetically, ACM Conference

on Computer and Communications Security (CCS), IEEE

Symposium on Security and Privacy (S&P), USENIX Secu-

rity Symposium (USEC), Network and Distributed System

Security Symposium (NDSS), and International Conference

on Software Engineering (ICSE). To reflect the most up to

date research progress, we also include works from preprint

website arXiv.org. For writings that appear in other venues

or mediums, we include them based on our own judgment

on their relevance. To conduct a thorough assessment, we

extract 15 metrics based on the features of DGF. We further

divide the metrics into three categories, including basic in-

formation, implementation details, and optimization methods.

In the following, we concentrate on properties that related to

the critical techniques of DGF, including directed type, input

optimization, seed prioritization, power assignment, mutation

scheduling, and data-flow analysis. Detailed assessment is

listed in Table I

A. Directed Type

Although this paper focuses on directed greybox fuzzing

(noted as G in Table I), some of the works we investigated

adopt symbolic execution to enhance the directedness, forming

directed hybrid fuzzing (noted as H), we also include them in

this table.

For the directed type, DGF was initially directed by target

sites that are manually labeled in the PUT, such as AFLGo

[21] and Hawkeye [42]. Then, researchers noticed that the

relationship among the targets is also helpful. For example,

in order to trigger use-after-free vulnerabilities, a sequence

of operations (e.g., allocate memory, use memory, and free

memory) must be executed in a specific order. UAFuzz [22]

and UAFL [28] leverages target sequences instead of target

sites to find use-after-free vulnerabilities. LOLLY [23] also

uses target statement sequences to guide greybox fuzzing

to trigger bugs that resulted from the sequential execution

of multiple statements. Berry [24] uses symbolic execution

to enhance the directedness of LOLLY when reaching deep

targets along complex paths. Apart from the target sequence,

researchers have proposed various mechanisms to direct the

fuzzing process. Memlock [31] is directed by memory usage

to find uncontrolled memory consumption bugs. V-Fuzz [32]

is directed by vulnerable probability, which is predicted by a

deep learning model to guide the fuzzing process to poten-

tially vulnerable code area. SemFuzz [25] and DrillerGo [26]

leverage semantic information retrieved from CVE description

and git logs to direct fuzzing and generate PoC exploits.

1DVUL [44] is directed by patch-related branches that directly

change the original data flow or control flow to discover 1-day

vulnerabilities. SAVIOR [30] and ParmeSan [29] are directed

by information from sanitizers. IJON [35] leverages annota-

tions from a human analyst to guide the fuzzer to overcome

significant roadblocks. RVFUZZER [34] is directed by control

instability to find input validation bugs in robotic vehicles.

PFUZZER [27] is directed explicitly at input parser to cover

the space of possible inputs well. DGF has evolved from

reaching target locations to hunting complex deep behavioral

bugs,
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Comparison of directed greybox fuzzers
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’17 AFLGo [21] G target sites X × - AFL × × X distance × × × × ×

’17 SemFuzz [25] G Semantic × X - Syzkaller × × X - X X X X ×

’18 Hawkeye [42] G target sites × × - AFL × X X distance × × × X ×

’18 TIFF [47] G bug × × IOF,

BOF

VUzzer × × X - X X X × ×

’19 ProFuzzer [48] G bug × × MCB AFL × × X - X × X X ×

’19 LOLLY [23] G target sequence × × - AFL × × X sequence coverege × × × × ×

’19 V-Fuzz [32] G vulnerable prob-

ability

× × - VUzzer IDA × X fitness score X × X X ×

’19 SUZZER [49] G vulnerable prob-

ability

× × - VUzzer IDA × X fitness score X × × × ×

’19 TAFL [50] G vulnerable prob-

ability

X × - AFL × × X semantic metrics X × × X ×

’19 Wüstholz [12] G target sites × × - HARVEY BRAN X X path × × × × ×

’19 Memfuzz [33] G memory access × × - AFL × × X code coverage; new

memory access

× × × × ×

’19 TortoiseFuzz [51] G vulnerable func-

tion

× × MCB AFL × × X function, loop, basic

block

X × X × ×

’19 PFUZZER [27] G parser × × - - X × × × × X X × ×

’19 RVFUZZER [34] G control × × IVB - X × × control instability × × × X ×

’20 RDFuzz [52] G target sites × × - AFL × × X distance; frequency × × × × X

’20 TOFU [53] G target sites × × - - × X X distance × × X X ×

’20 UAFuzz [22] G target sequence × × UAF AFL QEMU × X UAF-based distance;

target similarity;

cut-edge coverage;

X × × × ×

’20 UAFL [28] G typestate × × UAF AFL × × X operation sequence

coverage

X X × X ×

’20 Memlock [31] G memory usage × × MC AFL × × X function & operation

memory consumption

X × × × ×

’20 IJON [35] G human

annotations

X × - AFL × × X × × × × × ×

’20 FuzzGuard [54] G target sites × × - AFLGo × × X distance × × X × ×

’20 ParmeSan [29] G sanitizer checks X × - Angora × X X distance X X X × ×

’20 Ankou [55] G combinatorial

difference

X × - self-AFL × × execution distance × × × × ×

’16 SeededFuzz [46] H critical sites × × - KLEE × × × critical site coverage X × × × ×

’19 DrillerGo [26] H semantic × × - AFL Angr × × × X × × × ×

’19 1DVUL [44] H binary patches × × - Driller QEMU × × diatance × × X × ×

’19 SAVIOR [30] H sanitizer × × OOB,

IOF,

OS

AFL × X X bug potential cover-

age

X × × × ×

’20 Berry [24] H target sequence × × - AFL × × X similarity between the

target execution trace

and the enhanced tar-

get sequence

× × × × ×

* G: greybox fuzzing, H: hybrid fuzzing, UAF: use-after-free, MC: memory consumption, OOB: out-of-boundary, IOF: interger overflow, BOF: buffer
overflow, OS: Oversized shift, IVB: input validation bug, MCB: memory corruption bug

B. Input Optimization

Once the targets are marked, DGF needs to generate a

seed input to invoke the fuzzing process. A good seed input

can drive the fuzzing process closer to the target location

and improve the performance of the later mutation process.

According to Zong et al., on average, over 91.7% of the

inputs of AFLGo cannot reach the buggy code [54]. Thus,

optimizing the input generation has much room to improve the

directedness of DGF. SeededFuzz[46] focuses on improving

the generation and selection of initial seeds to achieve the

goal of directed fuzzing. It utilizes dynamic taint analysis

to identify the bytes of seeds which can influence values at

security-sensitive program sites and generates new inputs by

mutating the relative bytes and feeds them to target programs

to trigger errors. FuzzGuard [54] uses a deep-learning-based

approach to filter out unreachable inputs before exercising

them. It views program inputs as a kind of pattern and uses

a large number of inputs labeled with the reachability to the

target code learned from previous executions to train a model.

Then, FuzzGuard utilizes the model to predict the reachability

of the newly generated inputs without running them, which

saves the time spent on real execution.

A fuzzer can perform much better if it generates the input

concerning the input grammar. TOFU [53] takes advantage



of the known structure of the programs inputs in the form

of a protobuf [56] specification to generate valid inputs.

TOFU augments the input space to include command-line

flags by dividing the fuzzing process into syntactic-fuzzing

and semantic-fuzzing. However, it usually takes one or two

days to implement input-language grammar even if the user is

familiar with the input language [53]. SemFuzz [25] leverages

information (syscalls and parameters) retrieved from CVE

description and git log to build designed seed inputs to

increases the probability of hitting the vulnerable functions.

TIFF [47] and ProFuzzer [48] identify input types to assist

mutation towards maximizing the likelihood of triggering

memory corruption bugs. PFUZZER [27] is a syntax-driven

approach that specifically targets input parsers to maximize

the input space coverage without generating plausible inputs.

C. Seed Prioritization

The crux of DGF is selecting and prioritizing the seeds

that perform better in directedness under certain metrics. We

summarize three prevalent metrics widely adopted by modern

works, including distance, coverage, and probability.

1) Distance: As we can see from Table I, 32% (9/28) of

the directed fuzzers prioritize seeds based on distance and

give preference to the seeds that are closer to the target. As

a groundbreaking work, AFLGo [21] instruments the source

code at compile-time and calculates the distances to the target

basic blocks by the number of edges in the call graph and

control-flow graphs of the PUT. Then at run-time, it aggregates

the distance values of each exercised basic block to com-

pute an average value to evaluate the seed. Many followups

inherit this distance-based scheme, such as ParmeSan [29],

and 1DVUL [44]. TOFU’s distance metric is defined as the

number of correct branching decisions needed to reach the

target [53]. RDFuzz [52] combines distance with frequency

to prioritize seeds. The code areas are separated into high-

frequency and low-frequency areas by counting the execution

frequency. The inputs are classified into high/low distance and

high/low frequency four types. In the exploration phase, the

low-frequency seeds are prioritized to improve the coverage,

and for the exploitation phase, the low distance seeds are

preferred to achieve the target code areas. UAFuzz is a tailored

directed greybox fuzzer for complex behavioral use-after-free

vulnerabilities [22]. Different from the distance based on the

control-flow graph, it uses a distance metric of call chains

leading to the target functions that are more likely to include

both allocation and free functions. Wüstholz et al [12] uses

an online static lookahead analysis to determine a path prefix

for which all suffix paths cannot reach a target location. By

stressing the path prefix that might reach the target locations,

the power schedule of the fuzzer can allocate its resources

more strategically.

One drawback of the distance-based method is that it only

focuses on the shortest distance. When there is more than one

path reaching the same targets, the longer options might be

ignored, leading to a deviation. We will illustrate it with an

example in Section IV-D.

2) Similarity & Coverage: In addition to distance, simi-

larity is another useful metric, which indicates the coverage

of certain target forms, such as functions, locations, and bug

traces. This metric is particularly suitable when there are

many targets. Hawkeye [42] leverages a static analysis of

the PUT and combines the basic block trace distance with

covered function similarity for the seed prioritization and

power scheduling. LOLLY [23] uses a user-specified program

statement sequence as the target and takes the seed’s ability

of covering the target sequences (i.e., sequence coverage) as

a metric to evaluate the seed. UAFL [28] uses the operation

sequence coverage as the feedback to guide the testcase gen-

eration to progressively cover the operation sequences that are

likely to trigger use-after-free vulnerabilities. UAFuzz[22] also

uses a sequenceness-aware target similarity metric to measure

the similarity between the execution of a seed and the target

UAF bug trace. The sequenceness-aware target similarity

metric concretely assesses how many targets a seed execution

trace covers at runtime and takes ordering of the targets into

account. Berry [24] takes into account the coverage of nodes

in the target sequences and their execution context. It enhances

the target sequences with necessary nodes, namely the basic

blocks required to reach the nodes in the target sequences

for all paths. In addition to the branch coverage, Berry also

considers the similarity between the target execution trace and

the enhanced target sequence to prioritize the seeds. SAVIOR

[30] prioritizes seeds that have higher potentials to trigger

vulnerabilities based on the coverage of labels predicted by

UBSan [57]. TortoiseFuzz [51] differentiates edges that are

more likely to be destined vulnerable based on the fact that

memory corruption vulnerabilities are closely related to sensi-

tive memory operations. It prioritizes inputs by a combination

of coverige and security impact, which is represented by the

memory operations on three different types of granularity at

function, loop, and basic block.

3) Probability: Probability is another useful metric that

prioritizes the seed by how likely to reach the targets. It

usually combines the seed prioritization metric with the target

identification metric to direct fuzzing towards potentially vul-

nerable locations. V-Fuzz[32] and SUZZER [49] predicts the

vulnerable probability of functions based on a deep learning-

based model and gives each basic block in the vulnerable

function a static score. Then for each input, it calculates the

sum of the static score of all the basic blocks on its execution

path and prioritizes the inputs with higher scores. SAVIOR

[30] leverage UBSan to label code areas with buggy potentials.

TAFL [50] strengthens fuzzing toward regions that have a

higher probability of containing vulnerabilities, which is based

on static semantic metrics including sensitive, complex, deep

and rare-to-reach regions.

D. Power Assignment

After the seeds are selected and prioritized, the preferenced

seeds are given more power, namely more chances of fuzzing

tests. Although power assignment is crucial for DGF, very few

works, try to optimize this step. AFLGo [21] uses a simulated



annealing-based power schedule to gradually assign more

energy to seeds that are closer to the target locations while

reducing energy for further away seeds. Unlike the traditional

random walk scheduling that always accepts better solutions

which may be trapped in a local optimum, simulated annealing

accepts the solution which is not as good as the current one

with a certain probability, so it is possible to jump out of

the local optimum and reach the global optimal solution [23].

Hawkeye [42] also adopted simulated annealing but added

prioritization. Thus, seeds closer to the target are mutated

first, which further improves the directedness. LOLLY [23]

adopts an optimized simulated annealing-based power sched-

ule to achieve maximum sequence coverage. Controlled by a

temperature threshold, the cooling schedule in the exploration

stage randomly mutates the provided seeds to generate many

new inputs, while in the exploitation stage, it generates more

new inputs from seeds that have higher sequence coverage.

E. Mutator Scheduling

Some fuzzers (8 out of 28) optimize mutation strategies to

assist directed fuzzing, which is mainly realized by classifying

the mutators into different granularities. Hawkeye[42] lever-

ages an adaptive mutation strategy, which categorizes the mu-

tators as coarse-grained and fine-grained. Coarse-grained mu-

tators are used to change bulks of bytes during the mutations,

while fine-grained only involve a few byte-level modifications,

insertions, or deletions. It gives less chance of coarse-grained

mutations when a seed can reach the target function. Once the

seed reaches targets, the times of doing fine-grained mutations

increase, and coarse-grained mutations decrease. In practice,

the scheduling of mutators is controlled by empirical values.

Similarly, V-Fuzz [32] classify the mutation strategies into

slight mutation and heavy mutation and dynamically adjust

the mutation strategy via a threshold according to the actual

fuzzing states. SemFuzz [25] performs a resemble classifica-

tion, except it focuses on the syscall. SemFuzz utilizes coarse

mutation on the inputs to find a syscall sequence that can move

the execution towards the “vulnerable functions”. After that,

it switches to a fine-grained mutation on the syscall sequence

to monitor the “critical variables”. TAFL [50] also adopts

granularity-aware scheduling of mutators based on an empir-

ical observation that (1) coarse-grained mutators outperforms

fine-grained mutators on path growth; (2) combining multiple

mutators performs better than using a single kind of mutator.

ProFuzzer [48] entails different mutation policies according to

the input field types recognized by input type probing.

F. Data-flow Analysis

Data-flow analysis, such as taint analysis, can reflect the

effect of mutation in the generated inputs, thus, it is helpful to

optimize mutation strategy and input generation. RDFuzz [52]

leverages a disturb-and-check method to identify and protect

the distance sensitive content from the input, which is vital to

maintain the distance. Preventing such content during mutation

can help to approach the target code location more efficiently.

UAFL [28] adopts an information flow analysis to identify

the relationship between the input and the program variables

in the conditional statement, and assigns higher mutation

possibility for these input bytes with high information flow

strength, as they are more likely to change the values of target

statement. SemFuzz [25] tracks the kernel function parameters

that the critical variables depend on via backward data-flow

analysis. SeededFuzz[46] utilizes dynamic taint analysis to

identify the bytes of seeds which can influence values at

security-sensitive program sites. PFUZZER [27] uses dynamic

tainting of inputs to relate each value processed to the input

characters it is derived from. TIFF [47] infers input type by

means of in-memory data-structure identification and dynamic

taint analysis, which increases the probability of triggering

memory corruption vulnerabilities by type-based mutation.

Nevertheless, data-flow analysis usually enlarges the run-time

overhead.

IV. Challenges and Solutions

In this section, based on the assessment of the state-of-

the-art directed greybox fuzzers, we summarize the following

challenges in DFG and propose potential solutions.

A. Binary Code Support

Most of the known DGF works [21, 42, 52] are implemented

on top of AFL and inherit its compile-time instrumenta-

tion scheme to feedback the execution status or calculate

the distance-based metric. A significant drawback of such a

scheme is the dependence of the PUT source code. Thus, such

scheme is unsuitable for testing scenes that the source code

is unavailable, such as the commercial off-the-shelf (COTS)

software, or the security-critical programs that rely partly on

third-party libraries.

The binary-level DGF is less prevalent owing to the follow-

ing reasons. First, heavy runtime overhead. A straightforward

solution for the binary code testing is leveraging a full-system

emulator. For example, UAFuzz [22] handles binary codes and

extract execution paths via QEMU. However, emulator-based

tools are usually less efficient. For example, the execution

speed of vanilla AFL is 2X - 5X faster than its QEMU mode

[58]. Second, difficulty in collecting target information. For

an open sourced PUT, we can obtain targets information from

various channels, such as the CVE vulnerability descriptions,

changes made in the git commit logs, and human experience

on critical sits in the source code. However, for a PUT in

the binary code, we can only extract targets information from

bug traces. Third, difficulty in labeling the targets. For

the source code instrumentation approach, the targets can be

labeled based on the source code (e.g., cxxfilt.c, line 100).

However, the thing is much more difficult for the binary-level

approach. Since the binary code is hard to read, we have to

disassemble it, such as IDA Pro [22], and label the targets

with the virtual addresses. However, this is inconvenient and

time-consuming.

A viable solution to alleviate the performance limitation

is hardware assistance. Intel PT is a lightweight hardware

feature in recent Intel processors. It captures tracing data



about program execution, which replaces the need for dynamic

instrumentation. Intel PT can trace program execution on the

fly with negligible overhead. Using the packet trace captured

by Intel PT along with the corresponding binary of the

PUT, a security analyst could fully reconstruct the PUT’s

execution path. Averagely, the PT-based approach is 4.3x faster

than QEMU-AFL [59]. Previous hardware features such as

Intel Last Branch Record also perform program tracing, but

its output is stored in special registers instead of the main

memory, which limits the trace size. There have been attempts

of CGF with PT, such as kAFL [6], PTfuzz [59], Ptrix [58],

and Honggfuzz [60]. However, PT has never been used to

DGF yet. For the problem of target identification and labeling

at binary code level, we can leverage the machine-learning-

based approach [32], or heuristic binary diffing approach [30]

to automatically identify the vulnerable code.

B. Automatic target identification

Most of the known directed fuzzers require the analyst to

mark the targets manually (e.g., AFLGo, Hawkeye). They rely

on the prior knowledge of the target sites, such as the line

number in the source code or the virtual memory address at

the binary level, to label the target and steer the execution

to the desired locations [21, 42]. However, to obtain such

prior knowledge is challenging, especially for the binary code.

Among the works we investigated, about 43% (12/28) of

them try to optimize the way how the targets are identified.

Researchers use auxiliary metadata, such as changes made in

the PUT code based on git commit logs [25], information

extracted from bug traces [22], or information from CVE

vulnerability descriptions [26] to identify targets. Nevertheless,

they still rely on manual efforts to process the information and

mark the target on the PUT. It is unsuitable when fuzzing a

PUT for the first time or when well-structured information is

unavailable.

To achieve automatic target identification, we can use static

analysis tools to find potential dangerous areas in the PUT

[46, 61, 62]. However, these tools are often specific to the bug

types and programming languages used [29]. Another direction

is leveraging the compiler sanitizer passes, such as UBSan

[57], to annotate potential bugs in the PUT [29, 30]. For binary

code, 1DVUL [44] identifies patch-related target branches by

extracting different functions as well as their different basic

blocks through binary-level comparison based on Bindiff [63].

A deep learning-based method is also effective in predicting

the vulnerability and using the prediction information to guide

fuzzing [32]. Finally, attack surface identification component

[64] is also useful to identify vulnerable targets for DGF

automatically.

C. Differentiated weight metric

In most of the state-of-the-art directed greybox fuzzers,

the prioritization of seeds is based on equal-weight metrics.

Take the widely used distance-based metric as an example,

the ability to reach the target is measured by the distance

between the seed and the target. Specifically, the distance

Fig. 1. Probability bias when measuring the distance.

is represented by a number of edges, namely the transitions

among basic blocks. However, such measurement ignores the

fact that different branch jumps have different probabilities to

take. Thus, such inaccuracy limits the performance of directed

fuzzing.

We use the following example to illustrate the difference.

Figure 1 shows a control-flow graph fragment, in which the

input x is an integer ranges from 0 to 9. It is easy to know

that the probability of jumping from node A to node C is 0.1,

and from node A to node B is 0.9. We can also compute the

probabilities of other jumps by the branch conditions. For the

distance calculation based on the number of branch jumps,

the distance of A → C is shorter than that of A → G. This

is because A → C has only one jump but A → G has three

jumps. However, when we take the branch jump probability

into account, the probability of A → C is 0.1. However, the

probability of A → G is 0.9 × 0.7 × 0.5 ≈ 0.3, which is more

likely to be taken than A→ C and should be considered as has

a “shorter” distance. Thus, it is more reasonable to consider

the weight difference as well when calculating the distance

to guide the seed prioritization. The other seed prioritization

metrics, such as similarity and probability, should follow the

same rationale.

One possible solution is taking the branch jump probability

into account. When evaluating the reachability of the target

based on probability, each seed is prioritized based on how

likely the seed can generate an input to reach the target, namely

the probability of converting the current execution path of this

seed to a target path that goes through the target. Since an

execution path can be viewed as a Markov Chain of successive

branches [1], the probability of a path can be calculated

by gathering the probabilities of all the branches within the

path. We can estimate the branch probability by statistically

calculating the ratio based on the Monte Carlo method. The

density of the stationary distribution formally describes the

likelihood that the fuzzer exercises a certain path after a certain

number of iterations. A Monte Carlo based method requires



two conditions: 1) the sampling should be random; 2) the

sample scale should be large [3]. Fortunately, the fuzzing

process by nature fulfills these requirements. The execution

paths motivated by randomly mutated testcases can be viewed

as random samples, which met the first requirement. The

high throughput of the testcases generated by fuzzers makes

the estimation statistically meaningful, satisfying the second

requirement. Thus, regarding fuzzing as a sampling process,

we can statistically estimate the branch jump probability in a

lightweight fashion.

One possible drawback of such a probability-based ap-

proach is the potential run-time overhead. Both the statisti-

cal jump counting and the probability calculation introduce

extra computation. A simple way to alleviate performance

deduction is interval sampling. Another possible solution is to

accelerate the computation, which involves how the metadata

is stored and accessed. Conventionally, graph-based data is

stored in an adjacency table. However, since the probability-

based approach updates the jump statistics very often and the

reachability judgment also requires a quick edge tracing, thus,

the adjacency table is unsuitable owing to its low efficiency

when accessing data. Another option is the adjacency matrix

[51], which supports quick data access. However, since a jump

usually has two branches, the matrix would be vast but the

data distribution is relatively sparse, which increases space

consumption dramatically. Thus, a pre-condition to leverage

a probability-based approach is designing a customized data

structure that balances the time complexity and space com-

plexity.

D. Global Optimum Deviation

When there are multi-targets in a DGF testing, How to

coordinates these targets is another challenge. One strategy

is seeking the global shortest distance based on Dijkstras

algorithm, as AFLGo does. However, such global optimum

might miss the local optimum seed that is closest to a certain

target, leading to a deviation. We use the following example

to illustrate the situation.

Figure 2 shows a control-flow graph fragment, where

node K and O are the target nodes. Here we test three

seeds, one exercises path A→B→D→G→K, one exercises

path A→C→E→I→M→N→O, and the other exercises path

A→C→E→H→L. Based on the distance formula defined by

Böhme et al. [21], we have calculated the harmonic distances

between each node in the three paths to the two targets and

label them by the side of each node. The global distances of

the three seeds are dABDGK = (
4

3
+ 3 + 2 + 1 + 0)/5 ≈ 1.47,

dACEIMNO = (
4

3
+

3

4
+ 2 + 3 + 2 + 1 + 0)/7 ≈ 1.44, and

dACEHL = (
4

3
+

3

4
+ 2 + 1)/4 ≈ 1.27. Since dACEHL is the

smallest among the three, we should prioritize the seed of

path A→C→E→H→L. However, this is unreasonable because

path A→B→D→G→K goes through target node K and path

A→C→E→I→M→N→O goes through target O, but path

A→C→E→H→L does not reach any targets. Intuitionally,

Fig. 2. Deviation introduced by distance-based seed prioritization metric.

path A→C→E→H→L is far away from the targets and should

not be prioritized. Therefore, when there are multiple targets,

finding the global shortest distance has deviation and affects

the directedness of fuzzing.

The reason behind such deviation is that the distance-

based seed measurement only focuses on the shortest path.

When there are multiple paths reaching the same target,

the longer ones might be ignored, causing deviation in the

result. In Figure 2, if we consider path A→C→K and path

A→C→E→H→O, then dACK = (
4

3
+

3

4
+ 0)/3 ≈ 0.69,

dACEIMNO = (
4

3
+

3

4
+ 2 + 1 + 0)/5 ≈ 1.02. As expected,

dACK < dACEIMNO < dACEIMNL . This is because path A→C→K

and path A→C→E→H→O are the shortest paths to targets K

and O, respectively. The shortest path is always prioritized. To

avoid the bias in the evaluation of seeds, we should take into

account all the potential paths to the targets. To achieve this

goal, Hawkeye uses adjacent-function distance augmentation

based on a lightweight static analysis [42], which considers the

patterns of the (immediate) call relation based on the generated

call graph.

Another strategy of coordinating multi-targets is separating

the targets. For each seed, only selecting the minimum distance

among all the targets as the distance of the seed, and prioritize

the seed based on this min-distance [44]. In this way, we can

avoid the local optimum deviation, but this might slow down

the speed of reaching a specific target.

E. Missing Indirect Calls

No matter what metric is adopted, DGF relies on control-

flow analysis to prioritize the seed. Take the distance-based

metric as an example, the distance is generally measured

based on the control-flow graph and call graph. However,

most researchers construct the control-flow graph and call

graph statically via LLVM’s builtin APIs, and such graphs



are incomplete due to missing indirect calls. In real-world

programs, indirect function calls are prevalent. For example,

in libpng, 44.11% of the function calls are indirect function

calls [42]. For the static analysis approaches, indirect function

calls sites, such as passing a function pointer as a parameter in

C or using function objects and pointers, cannot be observed

directly from the source code or binary instructions. For

the binary code, the target address of indirect calls depends

on the values in the registers, which cannot be obtained

either. Besides, to construct an inter-procedural control-flow

graph, we need to combine each function’s control-flow graph

generated based on LLVM’s IR with the call graph of the

whole program. Therefore, the distance measurement based

on the call graph and control-flow graph is inaccurate without

the indirect calls, which affects DGF’s ability to reach the

targets.

For static approaches, one straightforward solution to this

challenge is performing Andersen’s points-to analysis for

function pointers [30, 42]. However, such inclusion-based

context-insensitive pointer analysis causes an indirect call to

have many outgoing edges, possibly yielding execution paths

that are not possible for a given input. TOFU [53] uses

function type-signatures to approximate the callable set at

each indirect-call site. However, it does not consider casts,

which could allow a differently typed function to be called,

introducing imprecision. For the dynamic situation, ParmeSan

[29] identifies the missing edges of indirect calls during real

executions and compensates the call graph gradually. Finally,

the graphs tend to be complete after enough number of fuzzing

executions. However, such a solution inevitably enlarges the

run-time overhead and cannot guarantee completeness.

F. Exploration-exploitation coordination

The last challenge for DGF lies in coordinating the

exploration-exploitation tradeoff. On the one hand, more ex-

ploration can obtain and provide adequate information for the

exploitation; on the other hand, an overfull exploration would

occupy many resources and delay the exploitation. It is difficult

to determine the boundary between the exploration phase and

the exploitation phase. In a word, we do not know when to

stop exploration and begin the exploitation can perform the

best. AFLGo adopts a fixed splitting of the exploration phase

and the exploitation phase. The time budgets are pre-set in the

test configuration before testing. Such a scheme is preliminary

because the separation point is empirical and inflexible. Since

each PUT has a different character, such fixed splitting is less

adaptive. Once the exploration phase turns to the exploitation

phase, there is no going back even if the direction performance

is poor due to not enough paths.

To illustrate how the splitting of the exploration phase and

the exploitation phase affects the performance of DGF, we

conduct a simple experiment with AFLGo on libxml. We

use the “-z” parameter of AFLGo to set different time budget

for the exploration phase and compare the performance. As

Figure 3 shows, the horizontal coordinate shows the time

duration of the test, and the vertical coordinate means the

 

0

2000

4000

6000

8000

10000

12000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

(min-distance)

(hours)

AFLGo-1 AFLGo-2 AFLGo-4

AFLGo-8 AFLGo-12 AFLGo-16

AFLGo-20 AFLGo-22

Fig. 3. Comparison on different splittings of the exploration phase and the
exploitation phase.

minimum distance of all the generated inputs to the target

code areas (min-distance). A small min-distance indicates a

better-directed performance. The experiments last for 24 hours,

and AFLGo-1 means 1 hour of exploration with 23 hours of

exploitation, and the rest are similar. From the results, we can

conclude that the splitting of the exploration phase and the

exploitation phase affects the performance of DGF, and the

best performance (AFLGo-16) requires adequate time for both

of the two phases. However, it is difficult to get an optimum

splitting.

Among the directed fuzzers we investigated, only one work

tries to improve the coordination of exploration-exploitation.

RDFuzz [52] uses an intertwined schedule to conduct explo-

ration and exploitation alternately. It counts the branch-level

statistics during the execution to separate the code areas into

high-frequency and low-frequency areas. Based on the two

evaluation criterias of frequency and distance, the inputs are

classified into high/low distance and high/low-frequency types.

Low-frequency inputs are helpful to improve the coverage,

which is required in the exploration; Low distance inputs are

helpful to achieve the target code areas, which are favored in

the exploitation. Finally, it uses an intertwined testing schedule

to conduct the exploration and exploitation alternately.

Another possible solution to this challenge is leveraging a

dynamic strategy to coordinate the splitting of the exploration

phase and the exploitation phase, which can adaptively switch

between the exploration phase and the exploitation phase. To

realize this scheme, we suggest to cast the splitting of fuzzing

phases to the dividing of seeds, namely dividing the seeds into

two groups: coverage seeds for exploration and directed seeds

for exploitation. The number of seeds in each group indicates

the energy spent on the corresponding phase. The coordination

of the two phases is implemented by controlling the number of

seeds in each group. We use a variable called dp to represent

the percentage of directed seeds among all the seeds, which

also indicates the percentage of energy that spends on the



Algorithm 2: DGF with adaptive splitting of exploration and
exploitation.

01 seedQ← i /* initial seeds*/
02 dp← 0
03 directedQ← ∅ /* Queue for directed seeds */
04 noPathCycles← 0
05 noCloserCycles← 0
06 while true do
07 f indPath← f alse
08 getCloser ← f alse
09 for s in seedQ do:
10 assign power by labels(s)
11 s′ ← mutate(s)
12 f eedback ← execute(s′)
13 if f ind new path(s′, f eedback) then
14 f indPath ← true
15 noPathCycles ← 0
16 label coverage(s′) /*set coverage label*/
17 seedQ← seedQ + s′ /* add new seed*/
18 mindistance ← evaluate(s′)
19 directedQ ← sort insert(s′,min distance)
20 if getting closer(mindistance) then
21 getCloser ← true
22 noCloserCycles← 0
23 dp← dp + 0.01

24 end
25 /*when a fuzzing cycle is done*/
26 if not f indPath then
27 noPathCycles + +
28 if not getCloser then
29 noCloserCycles + +
30 if noPathCycles > 100 and dp < 0.5 then

31 dp← 0.9 /* move to exploitation phase */

32 if noCloserCycles > 100 and dp > 0.9 then

33 dp← 0.1 /* move back to exploration phase */

34 dNum← len(seedQ) ∗ dp
35 label directed(directedQ, dNum) /*set directed label*/
36 end

exploitation phase. We give labels to the coverage seeds during

seed evaluation, and we give labels to directed seeds after

every fuzzing cycle, adjusted by dp. We use Algorithm 2 to

illustrate this design. A DGF with adaptive splitting should

start from the exploration phase (dp = 0) that focuses on

discovering new paths. Then, with the increasing of known

paths, we gradually increase dp to invoke the exploitation

phase, in which high-valued directed seeds are selected and

prioritized to enhance the reachability based on dp. When

the fuzzer can not find any new paths for a long duration,

the exploration phase has come to a bottleneck, and we

should quickly move to the exploitation phase by dramatically

increasing dp. Similarly, we also need to move from the

exploitation phase back to the exploration phase occasionally.

For example, we are already at the exploitation phase and dp

is very large (e.g., dp > 0.9) but we cannot get any closer

to the target for many fuzzing cycles, we should decrease

dp dramatically to move back to the exploration phase. This

is because the directed seeds in hand perform poorly, and

we should enlarge path coverage to discover more potential

directed seeds. With this scheme, both of the two phases can

coexist to achieve the best performance and adaptiveness. It

worth noting that the thresholds in the algorithm are used to

illustrate the principle. Reasonable values should be generated

based on a heuristic algorithm.

V. Discussion

According to Table I, 82% (23/28) of the works were

published after 2019, indicating that DGF is currently a

research hotspot. With the rapid development of DGF, apart

from target sites, various of indicators have been proposed

to direct DGF, including target sequence [22–24], semantic

information [25, 26], typestate [28], sanitizer checks [29, 30],

memory usage [31], and vulnerable probability [32]. DGF has

evolved from reaching target locations to hunting complex

deep behavioral bugs, such as used-after-free bugs [22, 28],

memory consumption bugs [31], memory violation bugs [33],

and deep stateful bugs [35].

A. Multi-targets Relationship Exploitation

Although 86% (24/28) of the directed fuzzers we inves-

tigated support multi-targets, only 4 pay attention to the

relationship among targets. When there are multiple targets,

we can optimize DGF via the relationship among the targets.

If they are unrelated, we can assign weights to them to

differentiate the importance or probability. Otherwise, the

hidden relationship can be extracted and exploited to improve

directedness. For example, UAFL [28] takes into account the

operation sequence ordering when leverageing target sequence

to find use-after-free vulnerabilities. This is because, to trigger

such behavioral complex vulnerabilities, one needs not only

to cover individual edges but also to traverse some long

sequence of edges in a particular order. Such a method can

be extended to detect semantic bugs, such as double-free and

API misuse. Berry [24] enhances the target sequences with

execution context (i.e., necessary nodes required to reach the

nodes in the target sequences) for all paths. Here we propose

the following relationships that can be further included.

- The spatial relationship. The relative position of targets

on the execution tree. Suppose we have two targets, we

can consider the relationship including whether they are

on the same execution path, how many execution paths

are shared by them, and which one is the ancestor or the

successor of the other.

- The stateful relationship. For targets that involve the

program state, we could consider their position in the

state space. For example, whether two targets share the

same states, and whether two states can convert to each

other on the state transition map.

- The interleaving relationship. For multi-threaded pro-

grams, the thread scheduling affects the execution or-

dering of events in different threads. Targets that can be

reached under the same thread interleaving should be a

close relationship in the interleaving space.

Based on the above discussion, we recommend taking into

account the relationship among targets when selecting and

prioritizing targets. The targets with higher reachability should
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Fig. 4. Statistics of mainsteam techniques used in DGF.

have higher priority. Targets with a closer relationship should

be covered with fewer test runs.

B. Technology Integration

Owing to that, DGF depends on the random mutation to

generate test inputs, it can hardly reach deep targets and is

less effective at triggering deep bugs along complex paths. In

order to enhance the directedness of reaching corner cases and

flaky bugs, various program analysis techniques, such as static

analysis, control-flow analysis, data-flow analysis, machine

learning, semantic analysis, and symbolic execution, have been

adopted (statistics are shown in Table 4).

Among the tools we investigate, 75% of them rely on

control-flow analysis to evaluate seeds and determine the

reachability to the targets; 46% of them leverage static analysis

to automatically identify targets [30] and extract information

from PUT [12, 42]; 32% use data-flow analysis (mainly taint

analysis) to identify the relationship between the input and the

critical program variables [27, 44, 47] and optimize mutation

strategy scheduling [28, 46]; 11% use machine learning to pre-

dict vulnerable code [32] and filter out unreachable inputs [54];

18% adopt semantic analysis to identify vulnerable targets

automatically [25, 26, 50] and learn input fields semantics to

optimize mutation; finally, 18% integrate symbolic (concolic)

execution to solve complex path constraints [24, 26, 30, 44].

In a personal view, directed hybrid fuzzing is a promising

direction that can leverage the precision of symbolic execution

and the scalability of DGF to mitigate individual weaknesses.

Directed fuzzing can prioritize and schedule input mutation

to get closer to the targets rapidly, and directed symbolic

execution can help to reach more in-depth code guarded by

sophisticated checks on the execution traces from program

entry to the targets. Nevertheless, we should be aware that

anti-fuzzing techniques [65, 66] can insert fake paths, add

delays in error-handling code, and obfuscate codes to slow

down dynamic analyses such as symbolic execution and taint

analysis [51].

Fig. 5. Differentiate execution path at instruction level.

C. Implementation Limitation

According to Table I, about 57% (16/28) of the tools are

implemented on top of AFL. Thus, the performance is, to some

extent, limited by the implementation of AFL. We illustrate

such limitation from two aspects.

Since the edge coverage of AFL is based on the basic block

transitions, thus, it is only sensitive at the basic block level and

cannot distinguish the path difference at the instruction level.

Figure 5 shows an example of a jump between two nearby

basic blocks. Since a traditional control-flow graph is only

path-sensitive at the basic block level, we cannot differentiate

whether the jump at address 0x400657 is taken (path 2) or not

(path 1) because there will be the same edge in the control-

flow graph, namely 0x400657 → 0x400671. Thus, general

basic block level control-flow graph is not sensitive enough

to precisely reflect the code coverage at the instruction level.

Another problem lies in the path collision. AFL inserts

random numbers for each branch jump at compile-time and

collects these inserted numbers from the register at run-time to

identify the basic block transition (i.e., the edge in the control-

flow graph). Then it maps such transitions to a 64KB bitmap

by cur location ∧ (prev location >> 1)]. This scheme incurs

path collision because different edges might have the chance

to share the same location.

Both of the two limitations of AFL can import imprecision

to the control-flow graph, which eventually affect the seed pri-

oritization based on the control-flow graph analysis, no matter

it is based on distance or other metrics. Although such limita-

tion can be alleviated by constructing finer-grained control-

flow graph or designing a customized hash scheme [67],

however, additional work inevitably increases the runtime

overhead. Thus, the implementation is essentially a tradeoff

between the effectiveness and the efficiency.

D. Efficiency Improvement

As we have discussed in last subsection, in order to realize

directedness in fuzzing, most researchers use additional instru-



mentation and data analysis. However, such additional analysis

inevitably incurs performance deduction. For the evaluation,

researchers usually focus on the ability to reach targets, using

metric such as Time-to-Exposure (the length of the fuzzing

campaign until the first testcase that exposes a given error [21])

to measure the performance of directed greybox fuzzers, while

ignoring the run-time overhead. However, for a given fuzzing

time budget, higher efficiency means more fuzzing executions

and, consequently, more chance to reach the target. Thus,

optimize fuzzing efficiency is another direction to improve the

directedness.

One solution is moving the execution-independent compu-

tation from run-time to compile-time. For example, AFLGo

measures the distance between each basic block and a tar-

get location by parsing the call graph and intra-procedure

control-flow graph of the PUT. Since both parsing graphs

and calculating distances are very time consuming, AFLGo

moves most of the program analysis to the instrumentation

phase at compile-time in exchange for efficiency at run-time.

Another optimization is at the implementation level. Since

most of the data we use during the analysis is graph-based,

how such metadata is stored and accessed is vital to the

efficiency. We can design an optimized data structure to store

such data, which should facilitate the frequent and quick access

to the data when searching based on the topological structure

of the graph. For example, using the graph database model

[68]. Finally, we can leverage parallel computing to improve

efficiency further. Prior works [69, 70] have successfully

applied parallelism to CGF but not yet to DGF. For DGF,

we can use a central node to maintain a seed queue that holds

and prioritizes all the seeds for DGF. Then, distributing the

seeds to parallel fuzzing instances on computational nodes to

test the PUT and collect feedback information.

E. Future research suggestions

Based on the assessment and analysis of known works, we

point out the following directions for future research.

- Among the tools we evaluated, only one (SemFuzz [25])

of them supports kernel code testing. Thus, introducing

DGF to kernel code and guiding fuzzing towards critical

sites such as syscalls [71] and error handling codes [72,

73] should be a productive direction.

- Although DGF has been trying to discover new bug

types, such as use-after-free and memory consumption

bugs, many commonly seen bugs have not been included

yet. Thus, another research direction is applying DGF to

specific bug types, such as information leakage bugs [74],

concurrency bugs [13–15], semantic bugs (TOCTTOU

[75], double fetch [43, 76]).

- As for the seed prioritization metric, most of the works

leverage distance and coverage (similarity) based meth-

ods, which facilitate quantitive seed evaluation without

introducing much overhead. However, a smaller distance

or broader coverage does not necessarily mean closer

to the target owing to the differentiated weight reason

(discussed in Section IV-C) and global deviation reason

(discussed in Section IV-D). We argue that probability-

based metrics should be more reasonable.

- Finally, staged fuzzing [53, 77] is a feasible approach

that can be further exploited for DGF. By dividing the

path to the target into sequential stages, staged directed

fuzzing can get to the target step by step by reaching

the sub-target in each stage. Moreover, we can leverage

different fuzzing strategies to satisfy the requirements in

different stages. For example, TOFU [53] uses syntactic-

fuzzing for command-line flags and semantic-fuzzing for

primary input files. Thus, staged fuzzing can reduce the

dimensionality of the input space for each individual stage

of fuzzing and improve fuzzing efficiency.

VI. Conclusions

Directed greybox fuzzing is a practical and scalable ap-

proach to software testing under specific scenarios, such as

patch testing and bug reproduction. The modern DGF has

evolved from reaching target locations to hunting complex

deep behavioral bugs. However, DGF still faces challenges,

including binary code support, automatic target identification,

differentiated weight metric, global optimum deviation, miss-

ing indirect calls, and exploration-exploitation coordination.

In this paper, we conduct the first in-depth study of directed

greybox fuzzing by investigating 28 state-of-the-art fuzzers.

Based on the feature of DGF, we extract 15 metrics to conduct

a thorough assessment of the collected tools and systemize

the knowledge of this field. According to the assessment, we

suggest paying more attention to apply differentiated weight in

seed prioritization, to overcome the global optimum deviation,

to exploit the relationship among targets, and to coordinate the

splitting of the exploration phase and the exploitation phase.

We also point out research directions for future work.
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dynamic symbolic execution toward unverified program

executions,” in Proceedings of the 38th International

Conference on Software Engineering, 2016, pp. 144–155.

[62] X. Du, B. Chen, Y. Li, J. Guo, Y. Zhou, Y. Liu, and

Y. Jiang, “Leopard: Identifying vulnerable code for vul-

nerability assessment through program metrics,” in 2019

IEEE/ACM 41st International Conference on Software

Engineering (ICSE). IEEE, 2019, pp. 60–71.

[63] zynamics.com, “Bindiff,” 2020. [Online]. Available:



\url{https://www.zynamics.com/bindiff.html}

[64] X. Du, “Towards building a generic vulnerability detec-

tion platform by combining scalable attacking surface

analysis and directed fuzzing,” in International Confer-

ence on Formal Engineering Methods. Springer, 2018,

pp. 464–468.
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